Некоторые важные замечания к формуле разложения
.
.
Последовательность расчета переходных процессов
операторным методом
1. Определение независимых начальных условий путем расчета докоммутационного режима работы цепи.
2. Составление операторной схемы замещения цепи (для простых цепей с нулевыми начальными условиями этот этап может быть опущен).
3. Запись уравнений по законам Кирхгофа или другим методам расчета линейных цепей в операторной форме с учетом начальных условий.
4. Решение полученных уравнений относительно изображений искомых величин.
5. Определение оригиналов (с помощью формулы разложения или таблиц соответствия оригиналов и изображений) по найденным изображениям.
В качестве примера использования операторного метода определим ток через катушку индуктивности в цепи на рис. 1.
С учетом нулевого начального условия операторное изображение этого тока
.
Для нахождения оригинала воспользуемся формулой разложения при нулевом корне
, | (1) |
где , .
Корень уравнения
.
Тогда
и
.
Подставляя найденные значения слагаемых формулы разложения в (1), получим
.
Воспользовавшись предельными соотношениями, определим и :
Формулы включения
Формулу разложения можно использовать для расчета переходных процессов при нулевых и ненулевых начальных условиях. Если начальные условия нулевые, то при подключении цепи к источнику постоянного, экспоненциального или синусоидального напряжения для расчета переходных процессов удобно использовать формулы включения, вытекающие из формулы разложения.
, | (2) |
где - входное операторное сопротивление двухполюсника при определении тока в ветви с ключом (при расчете тока в произвольной ветви это операторное сопротивление, определяющее ток в ней по закону Ома); - к-й корень уравнения .
.
.
В качестве примера использования формулы включения рассчитаем ток в цепи на рис. 2, если в момент времени t=0 она подсоединяется к источнику с напряжением ; ; .
В соответствии с заданной формой напряжения источника для решения следует воспользоваться формулой (2). В ней . Тогда корень уравнения . Производная и .
В результате
.
Сведение расчета переходного процесса к расчету
с нулевыми начальными условиями
Используя принцип наложения, расчет цепи с ненулевыми начальными условиями можно свести к расчету схемы с нулевыми начальными условиями. Последнюю цепь, содержащую пассивные элементы, можно затем с помощью преобразований последовательно-параллельных соединений и треугольника в звезду и наоборот свести к виду, позволяющему определить искомый ток по закону Ома с использованием формул включения.
Методику сведения цепи к нулевым начальным условиям иллюстрирует рис. 3, на котором исходная схема на рис. 3,а заменяется эквивалентной ей схемой на рис. 3,б, где . Последняя в соответствии с принципом наложения раскладывается на две схемы; при этом в схеме на рис. 3,в составляющая общего тока равна нулю. Таким образом, полный ток равен составляющей тока в цепи на рис. 3,г, где исходный активный двухполюсник АД заменен пассивным ПД, т.е. схема сведена к нулевым начальным условиям.
Следует отметить, что если определяется ток в ветви с ключом, то достаточно рассчитать схему на рис. 3,г. При расчете тока в какой-либо другой ветви АД в соответствии с вышесказанным он будет складываться из тока в этой ветви до коммутации и тока в ней, определяемого подключением ЭДС к пассивному двухполюснику.
Аналогично можно показать, что отключение ветви, не содержащей индуктивных элементов, при расчете можно имитировать включением в нее источника тока, величина которого равна току в ветви до коммутации, и действующему навстречу ему.
Переходная проводимость
При рассмотрении метода наложения было показано, что ток в любой ветви схемы может быть представлен в виде
,
где - собственная (к=m) или взаимная проводимость.
Это соотношение, трансформированное в уравнение
, | (3) |
будет иметь силу и в переходном режиме, т.е. когда замыкание ключа в m-й ветви подключает к цепи находящийся в этой ветви источник постоянного напряжения . При этом является функцией времени и называется переходной проводимостью.
В соответствии с (3) переходная проводимость численно равна току в ветви при подключении цепи к постоянному напряжению .
Переходная функция по напряжению
Переходная функция по напряжению наиболее часто используется при анализе четырехполюсников.
Если линейную электрическую цепь с нулевыми начальными условиями подключить к источнику постоянного напряжения , то между произвольными точками m и n цепи возникнет напряжение
,
где - переходная функция по напряжению, численно равная напряжению между точками m и n схемы при подаче на ее вход постоянного напряжения .
Переходную проводимость и переходную функцию по напряжению можно найти расчетным или экспериментальным (осциллографирование) путями.
В качестве примера определим эти функции для цепи на рис. 4.
В этой схеме
,
где .
Тогда переходная проводимость
.
Переходная функция по напряжению
.
Литература
Контрольные вопросы
Ответ: .
если : ; ; . | |
Ответ: . |